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A time scale is a nonempty, closed subset of R denoted by T for which a calculus can

be developed. We define the solution to y∆ = p(t)y to be the generalized exponential

function. In this work, we consider the generalized exponential function ez(t, t0)

on isolated time scales where the exponent z is a complex number. We show several

asymptotic properties of the generalized exponential function. In particular, we prove

several theorems that define the regions of convergence of the exponential ez(t, t0) to

0 as well as regions of divergence in the complex plane.
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Chapter 1

Time Scale Calculus

1.1 Preliminary Time Scale Definitions

We will give a basic introduction to the time scale calculus touching on the topics

that will be needed later. For a more thorough explanation, see [1].

Definition 1.1.1 (Time Scale). A time scale is a nonempty, closed subset of R

denoted by T.

Definition 1.1.2 (Forward and Backward Jump Operators). Let T be a time scale,

then for t ∈ T, we define the forward jump operator σ(t) : T→ T by

σ(t) := inf{s ∈ T : s > t},

and define the backward jump operator ρ(t) := T→ T by

ρ(t) := sup{s ∈ T : s < t},

where it is understood that inf ∅ = supT and sup ∅ = inf T.
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Definition 1.1.3 (Isolated Time Scale). A time scale T is said to be isolated if

t0 = inf T > −∞, thus σ(t0) > t0, if t0 = supT < ∞, thus ρ(t1) < t1, and if

inf T < t < supT it follows that ρ(t) < t < σ(t).

Definition 1.1.4 (Graininess Function). The graininess function µ : T → [0,∞) is

defined by

µ(t) := σ(t)− t.

1.2 The Generalized Exponential Function

Definition 1.2.1 (Regressive). A function p(t) is said to be regressive if 1+µ(t)p(t) 6=

0 for all t ∈ T and is denoted by p ∈ R.

Definition 1.2.2 (Cylinder Transformation). The cylinder transformation ξh : C\
{
− 1
h

}
→

C is defined as

ξh(z) =


1
h

Log (1 + zh) , h > 0,

z, h = 0,

where Log is the principal logarithm function.

Definition 1.2.3 (Generalized Exponential Function). For p ∈ R, the generalized

exponential function ep : T× T→ R is defined by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
,

for s, t ∈ T.

Theorem 1.2.1. Given p ∈ R, the solution to the first order dynamic equation

y∆ = p(t)y
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, with y(t0) = 1, is given by ep(t, t0).
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Chapter 2

Asymptotic Properties of the

Generalized Exponential Function

2.1 Introduction

We are concerned about the asymptotic properties of the generalized exponential

function ez(t, t0) where z is complex and regressive on isolated time scales that are

unbounded above. That is T = {t0, t1, · · · } where t0 is fixed, t0 < t1 < · · · , and

supT =∞. In particular, we are concerned with the asymptotic behavior of ez(tn, t0)

for z ∈ C ∩R.

It has been well established that if the time scale is isolated with a constant value

for the graininess, say µ′, then the region of convergence of the exponential ez(t, t0)

to 0 for z ∈ C ∩R is given by

|1 + µ′z| < 1.

Example 2.1.1. Consider the time scale generated by µ(tn) = 1 for all n ∈ N. The

region of convergence of the exponential ez(t, t0) to 0 in C∩R is given by |1 + z| < 1.
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Figure 2.1: Region of convergence of the exponential ez(t, t0) to 0 of the generalized
exponential function in the complex plane for the time scale with a constant graininess
of 1.
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Figure 2.2: Region of convergence of the exponential ez(t, t0) to 0 of the generalized
exponential function when T = R.

This gives the region as a circle in the complex plane with centered at (−1, 0) with a

radius of 1, as seen in Figure 2.1.

On the other hand, if the time scale is the set of real numbers, i.e. the typical

continuous case, we have that the region of convergence of the exponential ez(t, t0) to

0 for z ∈ C ∩R is given by Re(z) < 0.

This gives a region of the left half of the complex plane, seen in Figure 2.2.
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Pötzsche et al. give the following theorem in [4] on the asymptotic behavior of

the exponential for time scales that are unbounded above in the complex plane.

Theorem 2.1.1 ([4], Proposition 3.1). Assume T is unbounded above and fix t0 ∈ T.

If for z ∈ C ∩R such that

lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + zs|
s

∆s < 0,

then limn→∞ ez(tn, t0) = 0

This theorem is very difficult to work with due to the lim sup, as well as that

it needs to take into account the entire structure of the time scale to calculate the

∆-integral as well as particular points in the time scale T. The goal of this thesis is

given an isolated, unbounded from above time scale T, we want to find the region in

the complex plane independent of t ∈ T such that limn→∞ ez(tn, t0) = 0.

2.2 Preliminary Lemmas

This first lemma gives criteria to show either convergence to 0 or divergence of the

generalized exponential function.

Lemma 2.2.1. Assume T = {t0, t1, · · · } where t0 < t1 < · · · and supT =∞, and let

z ∈ C ∩R be given.

1: If
∑∞

k=0 ln |1 + µ(tk)z| = −∞, then limn→∞ ez(tn, t0) = 0.

2: If
∑∞

k=0 ln |1 + µ(tk)z| =∞, then limn→∞ ez(tn, t0) diverges.
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Proof. The generalized exponential function is defined by using the cylinder transform

as

ep(t, s) := exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
with ξh(z) =


Log(1+hz)

h
if h 6= 0

z if h = 0,

where Log is the principal logarithm.

Let z ∈ C ∩ R. Then, since this is an isolated time scale, we have µ(tn) 6= 0, so

the generalized exponential function is

ez(tn, t0) = exp

(
n−1∑
k=0

µ(tk)
ln (1 + µ(tk)z)

µ(tk)

)
= exp

(
n−1∑
k=0

ln (1 + µ(tk)z)

)
.

We are concerned with the generalized exponential’s behavior as n → ∞, so we

consider the modulus of the exponential as

lim
n→∞

|ez(tn, t0)| = exp

(
∞∑
k=0

ln |1 + µ(tk)z|

)
.

Define xn :=
∑n

k=0 ln |1 + µ(tk)z| and assume limn→∞ xn = −∞, i.e.∑∞
k=0 ln |1 + µ(tk)z| = −∞. Then limn→∞ e

xn = 0, so exp (
∑∞

k=0 ln |1 + µ(tk)z|) = 0,

implying ez(tn, t0) converges to 0 as n→∞.

Similarly, to show the generalized exponential function diverges as n → ∞, it is

sufficient to show that
∑∞

k=0 ln |1 + µ(tk)z| =∞.

With this lemma in hand, we now give two lemmas that show convergence of the

exponential ez(t, t0) to 0 or divergence based on the lim sup or lim inf of |1 + µ(tk)z|

respectively. This allows us to deal with time scales where the graininess never repeats

a value, but rather the values are formed by letting {µ(tn)}t∞n=0 be a sequence with a

nonzero limit as n→∞.
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Lemma 2.2.2. Assume T = {t0, t1, · · · } where t0 < t1 < · · · and supT =∞, and let

z ∈ C ∩R be given. If 0 < lim supk→∞ |1 + µ(tk)z| < 1, then limn→∞ ez(tn, t0) = 0.

Proof. Let z ∈ C ∩R be given such that 0 < lim supk→∞ |1 + µ(tk)z| < 1. Then

lim supk→∞ ln |1 + µ(tk)z| < 0. Define L := lim supk→∞ ln |1 + µ(tk)z|. By definition,

this implies that for all ε > 0, there exists an N ∈ N such that for all n ≥ N ,

ln |1 + µ(tn)z| < ε+L. Note that for sufficiently small ε,
∑∞

k=0 (ε+ L) = −∞. Using

the comparison test and noting ln |1 + µ(tn)z| < ε + L < 0 for n ≥ N , we have∑∞
k=0 ln |1 + µ(tk)z| = −∞. By Lemma 2.2.1 we then have limn→∞ ez(tn, t0) = 0.

Lemma 2.2.3. Assume T = {t0, t1, · · · } where t0 < t1 < · · · and supT =∞, and let

z ∈ C ∩R be given. If lim infk→∞ |1 + µ(tk)z| > 1, then limn→∞ ez(tn, t0) diverges.

Proof. Let z ∈ C ∩ R be given such that lim infk→∞ |1 + µ(tk)z| > 1. This implies

lim infk→∞ ln |1 + µ(tk)z| > 0. Define L := lim infk→∞ ln |1 + µ(tk)z|. By definition,

for all ε > 0, there exists an N ∈ N such that for all n ≥ N , ln |1 + µ(tn)z| > ε+L > 0.

Note that
∑∞

k=0 ε+ L =∞. Thus by the comparison test,
∑∞

k=0 ln |1 + µ(tk)z| =∞,

so by Lemma 2.2.1, ez(tn, t0) diverges as n→∞.

Example 2.2.1. Consider µ(tn) = 1 + 1
n2 . We have then lim supn→∞ µ(tn) =

lim infn→∞ µ(tn) = 1. By Lemma 2.2.2, the generalized exponential function con-

verges to 0 for z ∈ C ∩ R such that |1 + 1 · z| < 1, and by Lemma 2.2.3 the expo-

nential diverges when |1 + 1 · z| > 1. This gives a circle of convergence to 0 of the

exponential in the left half plane centered at (−1, 0) with radius 1 as seen in Figure

2.3 and divergence for any point outside that circle.
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Figure 2.3: Region of convergence of the exponential ez(t, t0) to 0 of the generalized
exponential function in the complex plane for the time scale with the limit of the
graininess being 1.

2.3 Time Scales with Repeated Value

Graininessess

Example 2.3.1. Consider the time scale defined by t0 = 0 and

µ(tk) =


1 if k is even

5 if k is odd.

That is t0 = 0, t1 = 1, t2 = 6, t3 = 7, t4 = 12, · · · . From [2] and [3], for this time

scale, the generalized exponential function converges to 0 if |1 + 1 · z| |1 + 5 · z| < 1

as seen in Figure 2.4.

This alternating graininess concept can be extended. The first extension is to
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Figure 2.4: Region of convergence of the exponential ez(t, t0) to 0 of the general-
ized exponential function in the complex plane for the time scale with graininesses
alternating between 1 and 5.

have more than two graininesses, i.e. for some N ∈ N,

µ(tk) =



r0 if k ≡ 0 mod N

r1 if k ≡ 1 mod N

...

rN−1 if k ≡ N − 1 mod N,

where ri > 0 for all i = 0, . . . , N − 1.

This following proposition generalizes the alternating graininess case to N re-

peated graininesses.

Proposition 2.3.1. Assume T = {t0, t1, · · · } where t0 < t1 < · · · and supT = ∞,

and that there exists an N ∈ N such that for all 0 ≤ i ≤ N − 1 there exists a real

number ri > 0 such that µ(tni
k
) = ri where {nik}∞k=0 is the subsequence of {tn}∞n=0 such

that nik ≡ i mod N for all k ∈ N. Let z ∈ C ∩R be given.
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1: If 0 <
∏N−1

j=0 |1 + rjz| < 1, then limn→∞ ez(tn, t0) = 0.

2: If
∏N−1

j=0 |1 + rjz| > 1, then limn→∞ ez(tn, t0) diverges.

Proof. Proof of (1): Let N ∈ N and assume there exists ri > 0 for all 0 ≤ i ≤ N − 1

where µ(tni
k
) = ri. We consider the subsequence n0

k = kN for each k ∈ N. We then

have

|ez(tkN , t0)| = (|1 + r0z| |1 + r1z| · · · |1 + rN−1z|)k .

Then limk→∞ |ez(tkN , t0)| = 0 if

|1 + r0z| |1 + r1z| · · · |1 + rN−1z| < 1.

Now we consider the subsequence n1
k = kN + 1 for each k ∈ N. We then have

|ez(tkN+1, t0)| = |1 + r0z| (|1 + r0z| |1 + r1z| · · · |1 + rN−1z|)k .

Again, limk→∞ |ez(tkN+1, t0)| = 0 if

|1 + r0z| |1 + r1z| · · · |1 + rN−1z| < 1.

We continue in this fashion until we reach the subsequence nN−1
k = kN+N−1, where

we have

∣∣ez(tkN+(N−1), t0)
∣∣ = |1 + r0z| |1 + r1z| · · · |1 + rN−2| (|1 + r0z| |1 + r1z| · · · |1 + rN−1|)k ,

which also converges to 0 if

|1 + r0z| |1 + r1z| · · · |1 + rN−1z| < 1.
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Figure 2.5: Region of convergence of the exponential ez(t, t0) to 0 of the generalized
exponential function in the complex plane for the time scale with the value of the
graininess cycling 1, 3, and 5.

Since these subsequences account for every term in the original sequence tn, we

have if

|1 + r0z| |1 + r1z| · · · |1 + rN−1z| =
N−1∏
j=0

|1 + rjz| < 1,

then

lim
n→∞

ez(tn, t0) = 0.

The proof of (2) follows similarly by switching the direction of the inequality

signs.

Example 2.3.2. Consider the time scale defined by the graininess which is defined

by

µ(tk) =


1 if k ≡ 0 mod 3

3 if k ≡ 1 mod 3

6 if k ≡ 2 mod 3.

The region of convergence of the exponential ez(t, t0) to 0 in the complex plane is

given by |1 + z| |1 + 3z| |1 + 6z| < 1 as seen in Figure 2.5.
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A second extension is that instead of having the graininess values take on N

constants, we have N sequences with nonzero limits.

Example 2.3.3. Consider the time scale defined by a graininess sequence such that

µ(tk) =


1

(k+1)2
+ 1 if k is even

1
k

+ 5 if k is odd,

then the following theorem will show that this case results in the exact same region of

convergence of the exponential ez(t, t0) to 0 shown in Figure 2.4 where the graininess

alternates in value between constant values 1 and 5.

Theorem 2.3.1. Assume T = {t0, t1, · · · } where t0 < t1 < · · · and supT = ∞, and

that there exists an N ∈ N such that for all 0 ≤ i ≤ N − 1 there exists a real number

ri > 0 such that limk→∞ µ(tni
k
) = ri where {tni

k
}∞k=0 is the subsequence of {tn}∞n=0 such

that nik ≡ i mod N for all k ∈ N. Let z ∈ C ∩R be given.

1: If 0 <
∏N−1

j=0 |1 + rjz| < 1, then limn→∞ ez(tn, t0) = 0.

2: If
∏N−1

j=0 |1 + rjz| > 1, then limn→∞ ez(tn, t0) diverges.

Proof. Proof of (1): Let ε > 0 and N ∈ N be given. Assume there exists ri > 0 such

that for all 0 ≤ i ≤ N − 1, limk→∞ µ(tni
k
) = ri. Finally assume

∏N−1
j=0 |1 + rjz| < 1,

which implies that there exists 0 < δ < 1 such that
∏N−1

j=0 (δ + |1 + rjz|) < 1.

Because limk→∞ µ(tni
k
) = ri, we have limk→∞

∣∣∣1 + µ(tni
k
)z
∣∣∣ = |1 + riz|. This im-

plies that there exists Mi’s for each 0 ≤ i ≤ N − 1 such that for all k > Mi,∣∣∣1 + µ(tni
k
)z
∣∣∣ < δ + |1 + riz|. Let

L0 = max


(

k∏
j=0

(δ + |1 + rjz|)

)N−1

k=0


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Furthermore, since
∏N−1

j=0 (δ + |1 + rjz|) < 1, there exists some L ∈ N such that for

all k > L,

L0

(
N−1∏
j=0

(δ + |1 + rjz|)

)k

< ε.

Let M ≥ max{{Mi}N−1
i=0 , L} such that M ≡ 0 mod N .

Consider the subsequence n0
k = M + kN . We have that for k ∈ N,

|ez(tM+kN , tM)| <

(
N−1∏
j=0

(δ + |1 + rjz|)

)M+k

< ε.

Thus limk→∞ |ez(tM+kN , tM)| = 0 if
∏N−1

j=0 (δ + |1 + rjz|) < 1.

Consider the subsequence n1
k = M + kN + 1. We have that for k ∈ N,

|ez(tM+kN+1, tM)| < (δ + |1 + r0z|)

(
N−1∏
j=0

(δ + |1 + rjz|)

)M+k

< ε.

Thus limk→∞ |ez(tM+kN+1, tM)| = 0 if
∏N−1

j=0 (δ + |1 + rjz|) < 1.

We continue on until we consider nN−1
k = M + kN + (N − 1). Then for all k ∈ N,

∣∣ez(tM+kN+(N−1), tM)
∣∣ < (N−2∏

j=0

(δ + |1 + rjz|)

)(
N−1∏
j=0

(δ + |1 + rjz|)

)M+k

< ε.

Thus limk→∞
∣∣ez(tM+kN+(N−1), tM)

∣∣ = 0 if
∏N−1

j=0 (δ + |1 + rjz|) < 1.

Since the subsequences {nik}∞k=M for 0 ≤ i ≤ N − 1 include every point in the

original sequence {µ(tn)}∞n=M we have that limn→∞ ez(tn, tM) = 0 if
∏N−1

j=0 |1 + rjz| <∏N−1
j=0 (δ+|1 + rjz|) < 1. Since we are considering the asymptotic behavior of ez(t, t0),
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Figure 2.6: The dark gray region is a region of convergence of the exponential ez(t, t0)
to 0 of the generalized exponential function, the light gray region is a region of
divergence, and the white region is indeterminate.

this implies if for z ∈ C ∩R such that

N−1∏
j=0

|1 + rjz| < 1,

then

lim
n→∞

|ez(tn, t0)| = 0.

The proof of (2) follows similarly by changing the direction of the inequalities.

2.4 Regular Patterns of Two Value Graininesses

Example 2.4.1. Consider the time scale T = {t0, t1, t2, · · · } where t0 = 0 and

(µ(tn))∞0 = (1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, · · · ). Note this does not fall into the

previous case with alternating graininesses, because there is no fixed length pattern

that repeats. Thus we want to apply our preliminary lemmas, so we need to calcu-

late lim supk→∞ |1 + µ(tk)z| and lim infk→∞ |1 + µ(tk)z|. Let z ∈ C ∩ R such that
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Re(z) < 0 be given. Note

|1 + µ(tk)z| =


|1 + z| , k = 1

2
n(n+ 1) for n ∈ N

|1 + 2z| , otherwise.

To find the lim inf and lim sup we must consider the question: is |1 + z| ≥ |1 + 2z| or

|1 + z| ≤ |1 + 2z|? Consider the linear fractional mapping

F (z) =
1 + z

1 + 2z
.

This maps all points inside the circle of radius 1
3

centered at (−1
3
, 0), i.e.

∣∣∣∣z +
1

3

∣∣∣∣ < 1

3
,

to points outside the unit circle, as well as mapping all points outside the unit circle

to inside the circle of radius 1
3

centered at (−1
3
, 0). We also have that for z such that,∣∣z + 1

3

∣∣ = 1
3
, it is mapped onto the unit circle. We then have two cases.

Case 1: Assume z ∈ C ∩R, such that
∣∣z + 1

3

∣∣ < 1
3
. We have

|F (z)| =
∣∣∣∣ 1 + z

1 + 2z

∣∣∣∣ > 1,

thus

|1 + z| > |1 + 2z| .

This gives

lim sup
k→∞

|1 + µ(tk)z| = |1 + z| .
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Since
∣∣z + 1

3

∣∣ < 1
3
, we have |1 + z| < 1, thus for z in this case, the generalized expo-

nential function converges to 0 by Lemma 2.2.1.

Case 2: Assume z ∈ C ∩R, such that
∣∣z + 1

3

∣∣ > 1
3
. We have

|F (z)| =
∣∣∣∣ 1 + z

1 + 2z

∣∣∣∣ < 1

which implies

|1 + z| < |1 + 2z| .

This implies

lim sup
k→∞

|1 + µ(tk)z| = |1 + 2z| ,

and

lim inf
k→∞

|1 + µ(tk)z| = |1 + z| .

By applying Lemma 2.2.2 we know that the generalized exponential function con-

verges to 0 for z ∈ C ∩ R such that |1 + 2z| < 1, and we know that it diverges for

z ∈ C ∩R such that |1 + z| > 1 by Lemma 2.2.3.

The white space in Figure 2.4 has undetermined behavior. For k ∈ N, we consider

∣∣∣ez (t k(k+1)
2

, t0

)∣∣∣ = |1 + z|k |1 + 2z|
k(k−1)

2 .
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Note

|1 + z|k |1 + 2z|
k(k−1)

2 = |1 + z|k |1 + 2z|
k2

2
− k

2

= |1 + z|k
√
|1 + 2z|k

2√
|1 + 2z|k

=

(
|1 + z|√
|1 + 2z|

)k√
|1 + 2z|

k2

.

Since z is a complex number, we can define a := |1+z|√
|1+2z|

and b :=
√
|1 + 2z| where

a, b ∈ R. Let us consider b > 1, that is
√
|1 + 2z| > 1 which implies |1 + 2z| > 1.

Then limn→∞(akbk
2
) will give us the behavior of the generalized exponential function

for this particular subsequence.

Claim: If a ∈ R and b > 1, then limk→∞(akbk
2
) =∞.

Assume to the contrary that there exists some M ∈ R such that

akbk
2

< M,

for all k. Then we have

(bk)n < Ma−k

bk <
M1/k

a

lim
k→∞

bk ≤ lim
k→∞

M1/k

a
.

By assumption, b > 1, so the left hand side approaches infinity as k → ∞, but the

right hand side approaches 1
a

as k →∞ as M and b are just some constants. This is

a contradiction, as ∞ 6< 1
a
. Thus akbk

2
diverges to infinity.
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Figure 2.7: The dark gray region is the region of convergence to 0 of the generalized
exponential function and the light gray region is the region of divergence.

This shows that the generalized exponential function diverges for this particular

subsequence when b = |1 + 2z| > 1. Then, since one subsequence diverges to infinity,

we have, in general, for z ∈ C ∩R such that |1 + 2z| > 1,

lim
n→∞

|ez(tn, t0)| =∞.

This then shows that in Figure 2.4, the only region of convergence is the dark gray

region, that is |1 + 2z| < 1.

Remark 2.4.1. It is interesting in this example that while both 1 and 2 appear an

infinite number of times as the values of the graininess, the number of 2s as the

value in the graininess “overpowers” the number of 1s due to it appearing much more

frequently.

To generalize this result, we introduce the graininess counting function. We define

Ci(n) to be the count of the number of times the graininess of the time scale is i in

the first n points.

Definition 2.4.1 (Graininess Counting Function). For some i > 0,

Ci(n) := |{µ(tk)|µ(tk) = i for k = 0, . . . , n}| ,
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where the vertical bars represent the cardinality of the set.

Note Ci(n) increases to infinity with respect to n.

So in the previous example, we had C1(k(k+1)
2

) = k and C2(k(k+1)
2

) = k(k−1)
2

for

k ∈ N.

Theorem 2.4.1. Let T be an isolated time scale with two graininesses, a and b,

occurring in the time scale infinitely many times, and let their counting functions

be Ca(n) = f(n) and Cb(n) = g(n). Let z ∈ C ∩ R. If limk→∞
f(k)
g(k)

= ∞ and if

|1 + az| > 1, then

lim
n→∞

|ez(tn, t0)| =∞.

Proof. Let a, b, f(n), g(n), and z be given as in the theorem statement. Let A =

|1 + az| > 1 and B = |1 + bz|. The generalized exponential function is then

|ez(tn, t0)| = Af(n)Bg(n).

Since

lim
k→∞

f(k)

g(k)
=∞,

for all M > 0, there exists an N ∈ N such that f(n) > Mg(n) for all n ≥ N . We

then have

f(n) > Mg(n)

Af(n) > AMg(n)

Af(n)Bg(n) > AMg(n)Bg(n) = (AMB)g(n)

We want to show (AMB) > 1, as then we would have limn→∞(AMB)g(n) =∞ since

g(n) is an increasing function that goes to infinity as n→∞. If m > − logAB, then
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Am > 1
B

implying AmB > 1. But m is arbitrarily large, thus we have m > − logAB.

This shows (AMB) > 1, which shows

lim
n→∞

Af(n)Bg(n) = lim
n→∞

|ez(tn, t0)| =∞.

2.5 Time Scales with a Graininess Sequence with

a Limit of 0

The following theorem deals with isolated time scales where the graininess is defined

by a sequence with a limit of 0. We will give a theorem which gives a region of con-

vergence to 0 of the generalized exponential function for a time scale T = {t0, t1, · · · }

for which there exists a function f : [t0,∞)→ [0,∞) such that the following hold:

(H1) f(ti) = µ(ti) for all i ∈ N,

(H2) limx→∞ f(x) = 0,

(H3) f(x) is twice differentiable for x ∈ (0,∞),

(H4) there exists some N ∈ N such that f ′(n) < 0 for all n > N ,

(H5) limk→∞ 2k+1f ′(2k) = 0,

(H6) limk→∞
2kf ′′(2k)
f ′(2k)

= −2.

In the following example where µ(tk) = 1/k, we find a function f(t) such that

(H1-H6) all hold. A similar example can be given for µ(tk) = 1
k ln(k)

.
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Figure 2.8: Region of convergence of the exponential ez(t, t0) to 0 of the generalized
exponential function when T is generated by µ(tk) = 1

k
.

Example 2.5.1. Let t0 = 0 and µ(tk) = 1
k

for k ∈ N. Then choose f(x) = 1/x. This

satisfies (H1), (H2), and (H3). Note than that f ′(x) = − 1
x2

is negative for all x > 0,

so (H4) holds. Furthermore

lim
k→∞

2k+1f ′(2k) = lim
k→∞
−2k+1

22k
= lim

k→∞
− 2

2k
= 0,

thus (H5) holds. Finally,

lim
k→∞

2kf ′′(2k)

f ′(2k)
= lim

k→∞
−2k22k2

23k
= −2

which satisfies (H6).

The following theorem will show that the generalized exponential function con-

verges to 0 in the left half of the complex plane as seen in Figure 2.8.

Theorem 2.5.1. Assume T = {t0, t1, · · · } where t0 < t1 < · · · and supT = ∞

generated by a graininess defined by µ(tk) such that limk→∞ µ(tk) = 0. Assume there

exists a real-valued function f(x) such that the following hypotheses hold:
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(H1) f(ti) = µ(ti) for all i ∈ N,

(H2) limx→∞ f(x) = 0,

(H3) f(x) is twice differentiable for x ∈ (0,∞),

(H4) there exists some N ∈ N such that f ′(n) < 0 for all n > N ,

(H5) limk→∞ 2k+1f ′(2k) = 0,

(H6) limk→∞
2kf ′′(2k)
f ′(2k)

= −2.

Let z ∈ C ∩R be given such that Re(z) < 0, then limn→∞ ez(tn, t0) = 0.

Proof. Let z = a + bi with a < 0 be given. Assume limk→∞ µ(tk) = 0, and let f(x)

be a function such that (H1)-(H6) hold.

By Lemma 2.2.1 we want to show

∞∑
k=0

ln |1 + µ(tk)z| = −
∞∑
k=0

ln

∣∣∣∣ 1

1 + µ(tk)z

∣∣∣∣
diverges to negative infinity to show convergence of the generalized exponential func-

tion to 0. We will do this by using the Cauchy condensation test for divergence, as

well as the root test to show divergence.

By the Cauchy condensation test, the sum
∑∞

k=0 ln
∣∣∣ 1

1+f(k)z

∣∣∣ =∞ if and only if∑∞
k=0 2k ln

∣∣∣ 1
1+f(2k)z

∣∣∣ =∞, as long as ln
∣∣∣ 1

1+f(k)z

∣∣∣ is eventually non-increasing. To show



24

it is eventually non-increasing, consider the derivative of ln
∣∣∣ 1

1+f(k)z

∣∣∣ = ln
∣∣∣ 1

1+f(k)(a+bi)

∣∣∣.
d

dk
ln

∣∣∣∣ 1

1 + f(k)(a+ bi)

∣∣∣∣ =
d

dk
− ln |1 + f(k)(a+ bi)|

=
d

dk
− ln

(√
(1 + af(k))2 + (bf(k))2)

)
=− 1

2

2f ′(k) ((a2 + b2)f(k) + a)

(a2 + b2)f(k)2 + 2af(k) + 1

=− f ′(k)
((a2 + b2)f(k) + a)

(a2 + b2)f(k)2 + 2af(k) + 1
.

Let g(x) =
((a2+b2)f(x)+a)

(a2+b2)f(x)2+2af(x)+1
. Note the denominator factors as(

f(x)− −2a+
√

4a2+4(a2+b2)

2

)(
f(x)− −2a−

√
4a2−4(a2+b2)

2

)
, but f(x) is a real-valued

and continuous function on (0,∞), so there are no real roots of the denominator,

thus there are no vertical asymptotes for f(x) with x ∈ (0,∞). This implies that

g(x) is continuous on the interval (0,∞). Now consider

lim
k→∞

g(k) = lim
k→∞

((a2 + b2)f(k) + a)

(a2 + b2)f(k)2 + 2af(k) + 1

=
((a2 + b2) limk→∞ f(k) + a)

(a2 + b2) limk→∞ f(k)2 + 2a limk→∞ f(k) + 1

=
0 + a

0 + 0 + 1
= a.

Note −f ′(k)
((a2+b2)f(k)+a)

(a2+b2)f(k)2+2af(k)+1
= −f ′(k)g(k). Since limk→∞ g(k) = a and a < 0

by assumption, there exists some K0 > 0 such that for all k > K0, g(k) < 0. By (H4),

there exists some K1 such that for all k > K1, f ′(k) < 0. Set K = max{K0, K1}. We

then have−f ′(k)g(k) < 0 for all k > K. Therefore we have the derivative is eventually

negative, thus the original term is eventually non-increasing, so we can apply the
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Cauchy condensation test. We are now concerned with showing the divergence of

∞∑
k=0

2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣ .
We will now apply the root test to the new summand obtained from the Cauchy

condensation test. We will show

lim
k→∞

k

√∣∣∣∣2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣∣∣∣∣ = 1

and approaches 1 from above, thus showing the summand diverges.

lim
k→∞

k

√∣∣∣∣2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣∣∣∣∣ = lim
k→∞

k
√
|−2k ln |1 + f(2k)z||

= lim
k→∞

k

√∣∣∣2k ln
√

(1 + f(2k)a)2 + (f(2k)b)2

∣∣∣
= lim

k→∞
k
√
|2k−1 ln ((1 + f(2k)a)2 + (f(2k)b)2)|

= lim
k→∞

21−1/k
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣1/k .

Clearly the 21−1/k factor will go to 2 as k →∞, so we will now go on to show the

limit exists for the other factors and that they approach 1
2
.
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lim
k→∞

21−1/k
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣1/k
= 2 lim

k→∞

∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2
)∣∣1/k

= 2 exp

(
lim
k→∞

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

)
.

The limit can be moved inside the exponent due to the continuity of the exponen-

tial. We want to show

lim
k→∞

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

= − ln (2) ,

which would imply

lim
k→∞

k

√∣∣∣∣2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣∣∣∣∣ = 1

as desired.

Consider

lim
k→∞

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

.

It can be shown using the continuity of the natural log and (H2), that in the numera-

tor, the argument of the inner natural log approaches 1 from above, so the argument

in the outer natural log approaches 0, thus the numerator itself approaches negative

infinity as k → ∞. The denominator of the limit we are considering diverges to

positive infinity, thus we can apply L’Hopital’s rule.
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lim
k→∞

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

= lim
k→∞

2k+1 ln(2)f ′(2k)

ln ((1 + af(2k))2 + (bf(2k))2)

((a2 + b2)f(2k)2 + a)

((a2 + b2)f(2k) + 2af(2k) + 1)

= lim
k→∞

2k+1 ln(2)f ′(2k)a

ln ((1 + af(2k))2 + (bf(2k))2)
. (H2)

By (H5), the numerator converges to 0 as k →∞, and it can be shown using the

continuity of the natural log and (H2), that in the denominator the term inside the

natural log approaches 1 from above as k →∞, implying the denominator approaches

0, so we can again apply L’Hopital’s rule to obtain

lim
k→∞

2k+1 ln(2)f ′(2k)a

ln ((1 + af(2k))2 + (bf(2k))2)
= lim

k→∞

2k+1 ln(2)2a
(
2kf ′′(2k) + f ′(2k)

)
2k+1 ln(2)f ′(2k)((a2+b2)f(2k)+a)

(a2+b2)f(2k)2+2af(2k)+1

.

Simplifying, we are left with

lim
k→∞

ln(2)

(
1 +

2kf ′′(2k)

f ′(2k)

)
= − ln(2). (H6)

Thus

lim
k→∞

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

= − ln (2) ,

so

2 exp

(
lim
k→∞

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

)
= 1,

thus

lim
k→∞

k

√
2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣ = 1.
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We will now show that

k

√
2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣
eventually approaches 1 from above when z ∈ C ∩ R such that Re(z) < 0. We will

do this by showing

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

approaches − ln(2) from above by looking at its derivative.

d

dk

ln
∣∣ln ((1 + f(2k)a)2 + (f(2k)b)2

)∣∣
k

=
2k+1 ln(2)f ′(2k)

(
(a2 + b2)f(2k) + a

)
ln ((1 + af(2k))2 + (bf(2k))2)

((a2 + b2)f(2k) + a)

((a2 + b2)f(2k) + 2af(2k) + 1)
− 1

k
.

Note

lim
k→∞

2k+1 ln(2)f ′(2k)
(
(a2 + b2)f(2k) + a

) (
(a2 + b2)f(2k) + a

)
ln ((1 + af(2k))2 + (bf(2k))2) ((a2 + b2)f(2k) + 2af(2k) + 1)

:= h(k) = − ln(2)

from earlier in the proof. Since − ln(2) < 0, we have that there exists a K > 0 such

that h(k) < 0 for all k > K. Thus, eventually h(k)− 1
k
< 0 for all k > K.

Since h(k) − 1
k
< 0 for all k > K, the derivative approaches − ln(2) from above

which implies

lim
k→∞

k

√
2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣ = 1

from above, thus by the root test, we have

∞∑
k=0

2k ln

∣∣∣∣ 1

1 + f(2k)z

∣∣∣∣ =∞.
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Therefore, via the Cauchy condensation test we have

∞∑
k=0

ln

∣∣∣∣ 1

1 + f(k)z

∣∣∣∣ =∞,

so Lemma 2.2.1 is satisfied showing the generalized exponential function converges to

0 for all z ∈ C ∩R such that Re(z) < 0.
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Chapter 3

Graphs of Regions of Convergence

of the Exponential ez(t, t0) to 0 in

the Complex Plane

The following graphs show the region of convergence of the exponential ez(t, t0) to 0

in the complex plane.
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Figure 3.1: Graininess is constantly 1.
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Figure 3.2: Real case, where the graininess is constantly 0.
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Figure 3.3: Graininess alternating between the values of 1 and 5.
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Figure 3.4: Graininess alternating between the values of 1 and 6.
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Figure 3.5: Graininess cycling between the values of 1, 3, and 6.
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